Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode.
نویسندگان
چکیده
The influenza virus nonstructural protein 1 encoded by influenza A virus (NS1A protein) is a multifunctional protein involved in both protein-protein and protein-RNA interactions. NS1A binds nonspecifically to double-stranded RNA (dsRNA) and to specific protein targets, and regulates several post-transcriptional processes. The N-terminal structural domain corresponding to the first 73 amino acids of the NS1 protein from influenza A/Udorn/72 virus [NS1A(1-73)] possesses all of the dsRNA binding activities of the full-length protein. Both NMR and X-ray crystallography of this domain have demonstrated that it is a symmetric homodimer which forms a six-helix chain fold, a unique structure that differs from that of the predominant class of dsRNA-binding domains, termed dsRBDs, that are found in a large number of eukaryotic and prokaryotic proteins. Here we describe biophysical experiments on complexes containing NS1A(1-73) and a short 16 bp synthetic dsRNA duplex. From sedimentation equilibrium measurements, we determined that the dimeric NS1A(1-73) binds to the dsRNA duplex with a 1:1 stoichiometry, yielding a complex with an apparent dissociation constant (K(d)) of approximately 1 microM. Circular dichroism and nuclear magnetic resonance (NMR) data demonstrate that the conformations of both NS1A(1-73) and dsRNA in the complex are similar to their free forms, indicating little or no structural change in the protein or RNA upon complex formation. NMR chemical shift perturbation experiments show that the dsRNA-binding epitope of NS1A(1-73) is associated with helices 2 and 2'. Analytical gel filtration and gel shift studies of the interaction between NS1A(1-73) and different double-stranded nucleic acids indicate that NS1A(1-73) recognizes canonical A-form dsRNA, but does not bind to dsDNA or dsRNA-DNA hybrids, which feature B-type or A/B-type intermediate conformations, respectively. On the basis of these results, we propose a three-dimensional model of the complex in which NS1A(1-73) sits astride the minor groove of A-form RNA with a few amino acids in the helix 2-helix 2' face forming an electrostatically stabilized interaction with the phosphodiester backbone. This mode of dsRNA binding differs from that observed for any other dsRNA-binding protein.
منابع مشابه
Conserved surface features form the double-stranded RNA binding site of non-structural protein 1 (NS1) from influenza A and B viruses.
Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It bin...
متن کاملIntracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein.
Virus-infected mammalian cells are a battleground: cells mount antiviral defenses against the virus, and these defenses are countered by the infecting virus. The eventual outcome of this war is a major determinant of the pathogenesis of the virus infection. In this minireview we will discuss the intracellular warfare between human influenza viruses and human cells. Influenza A and B viruses, tw...
متن کاملFusion and sequence analysis of the influenza A (H9N2) virus M2e and C-terminal fragment of Mycobacterium tuberculosis HSP70 (H37Rv)
The present study was aimed to construct a fusion plasmid harboring the extracellular domain of the influenza A M2-protein (M2e), which was fused to the N-terminus of the truncated HSP70 (HSP70359–610) molecule as a new approach for future vaccine research against influenza A. The amplified fragments, M2e and HSP70359-610 genes, were gel-purified. The products were then single digested with Bam...
متن کاملA Second RNA-Binding Site in the NS1 Protein of Influenza B Virus.
Influenza viruses cause a highly contagious respiratory disease in humans. The NS1 proteins of influenza A and B viruses (NS1A and NS1B proteins, respectively) are composed of two domains, a dimeric N-terminal domain and a C-terminal domain, connected by a flexible polypeptide linker. Here we report the 2.0-Å X-ray crystal structure and nuclear magnetic resonance studies of the NS1B C-terminal ...
متن کاملProkaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70
Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 43 7 شماره
صفحات -
تاریخ انتشار 2004